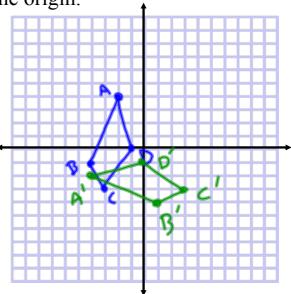
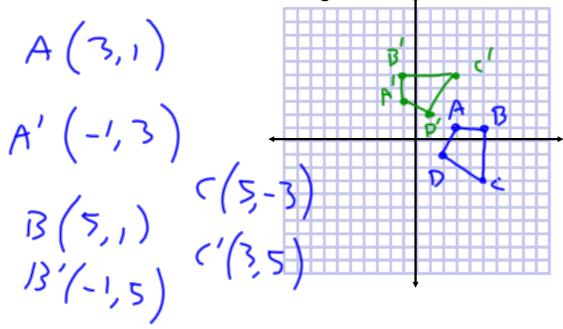

Warm Up

1. Graph $\triangle ABC$ and reflect it in the line y = x. A(5, 1) B(3, -7) C(1, 2)

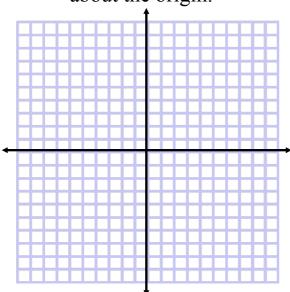
- A'(1,5)
- 2. Given the points M(3, 5), N(-5, 3) and O(0, 0), find MO, NO, and $m \angle MON$
- 3. Multiply

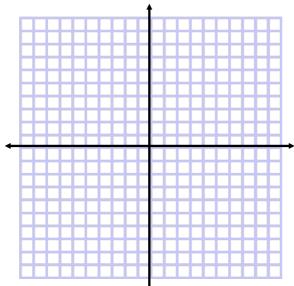

9-4 Rotations

Rotation - +

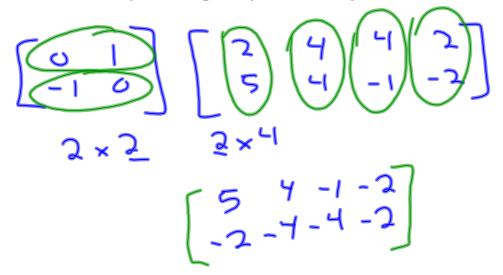

Center of rotation -

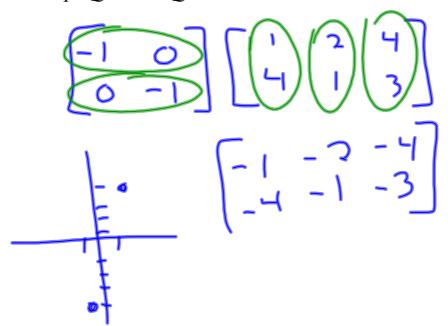
Angle of rotation - amount of "Spin"


Ex 1 Graph quadrilateral ABCD with vertices A(-2, 4), B(-4, -1), C(-3, -3), and D(-1, 0). Then rotate the quadrilateral 90 counterclockwise about the origin.


Ex 2 Graph quadrilateral ABCD with vertices A(3, 1), B(5, 1), C(5, -3), and D(2, -1). Then rotate the quadrilateral 90 counterclockwise about the origin.

Ex 3 Graph triangle ABC with vertices A(-2, 1), B(4, 2), and C(1, 0). Then rotate the triangle 270° counterclockwise about the origin.


Ex 4 Graph triangle ABC with vertices A(3, 7), B(2, 1), and C(5, 2). Then rotate the triangle 180° counterclockwise about the origin.


Reflection and Rotation Matricies

Reflect across the *x*-axis: multiply by $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ Reflect across the *y*-axis: multiply by $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ Rotate 90 degrees: multiply by $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ Rotate 180 degrees: multiply by $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ Rotate 270 degrees: multiply by $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ Rotate 360 degrees: multiply by $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Ex 5 Trapezoid PQRS has vertices P(2, 5), Q(4, 4), R(4, -1), and S(2, -2). Find the image matrix for a 270 ° rotation about the origin. Graph PQRS and P'Q'R'S'.

Ex 6 Triangle QRS has vertices Q(1, 4), R(2, 1), and S(4, 3). Find the image matrix for a 180° rotation about the origin. Graph QRS and Q'R'S'.

